

# **BANGLADESH TECHNICAL EDUCATION BOARD**

Agargaon, Dhaka-1207

4-YEAR DIPLOMA-IN-ENGINEERING PROGRAM SYLLABUS (PROBIDHAN-2016)

# **COMPUTER TECHNOLOGY**

TECHNOLOGY CODE: 666

6th SEMESTER

# DIPLOMA IN ENGINEERING PROBIDHAN-2016

# **COMPUTER TECHNOLOGY**

# 6th Semester

| SI.   | Subject             | Name of the Subject                | ТРС |    | Marks  |        |           |        |       |     |
|-------|---------------------|------------------------------------|-----|----|--------|--------|-----------|--------|-------|-----|
| No.   | Code                |                                    |     |    | Theory |        | Practical |        | Total |     |
|       |                     |                                    |     |    |        | Cont.  | Final     | Cont.  | Final |     |
|       |                     |                                    |     |    |        | Assess | Exam      | Assess | Exam  |     |
| 1     | 66661               | Principals of Software Engineering | 2   | 6  | 4      | 40     | 60        | 50     | 50    | 200 |
| 2     | 66662               | Microprocessor & Interfacing       | 2   | 3  | 3      | 40     | 60        | 25     | 25    | 150 |
| 3     | 66663               | Microcontroller Application        | 0   | 6  | 2      | -      | -         | 50     | 50    | 100 |
| 4     | 66664               | Database Management System         | 2   | 3  | 3      | 40     | 60        | 25     | 25    | 150 |
| *5    | <mark>6666</mark> X | Optional Subject -1                | 2   | 3  | 3      | 40     | 60        | 25     | 25    | 150 |
| 6     | 69054               | Environmental Studies              | 2   | 0  | 2      | 40     | 60        | -      | -     | 100 |
| 7     | 65852               | Industrial Management              | 2   | 0  | 2      | 40     | 60        | -      | -     | 100 |
| Total |                     |                                    | 12  | 21 | 19     | 240    | 360       | 175    | 175   | 950 |

# \* 6666X Optional Subjects-I

| Group                      | Subject code | Subject Name                    |  |  |  |  |
|----------------------------|--------------|---------------------------------|--|--|--|--|
| Network Maintenance Group  | 66665        | Network & Data Center Operation |  |  |  |  |
| Automation System Group    | 66666        | PLC Automation System           |  |  |  |  |
| Software Developer Group   | 66667        | Web Mastering                   |  |  |  |  |
| Multimedia Developer Group | 66668        | Multimedia & Animation          |  |  |  |  |

## 66661

#### **OBJECTIVES**

• To study the approaches of application of engineering to software.

• To develop knowledge and skill to apply systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software.

### SHORT DESCRIPTION

Concept of software engineering, Basics of Software development life cycle (SDLC), Project management, Requirements analysis, Design basics, Analysis & Design tools, Design strategies, User Interface design, understanding of Design complexity, Software implementation, Testing and quality assurance, Maintenance, CASE tools overview;

### **DETAIL DESCRIPTION**

### Theory:

#### 1. Understand the concept of software engineering

- 1.1 Define software engineering.
- 1.2 Describe the evolution of software engineering.
- 1.3 List software evolution laws.
- 1.4 Describe E-Type software evolution laws.
- 1.5 Describe software paradigms.
- 1.6 Necessity of software engineering.
- 1.7 List the characteristics of good software.

#### 2. Understand the basics of software development life cycle (SDLC)

- 2.1 Describe the software development life cycle activities.
- 2.2 Describe software development paradigm (Waterfall model, Iterative model, spiral model, agile development)
- 2.3 Describe agile development.
- 2.4 State the agile manifesto.
- 2.5 List agile manifesto items.
- 2.6 List key principles of agile.
- 2.7 Describe agile methodologies

#### 3. Understand the software project management

- 3.1 State the need of software project management.
- 3.2 Describe role of software project manager.
- 3.3 List software management activities.
- 3.4 Describe configuration management.
- 3.5 Describe project management tools.

#### 4. Understand software requirement engineering

- 4.1 Describe software requirement engineering process.
- 4.2 List requirement elicitation process.
- 4.3 Describe requirement elicitation techniques.
- 4.4 List software requirements characteristics.
- 4.5 Describe types of software requirements.
- 4.6 Describe the role of software system analyst.
- 4.7 List software metrics and measures.

#### 5. Understand the software design basics, analysis and design tools

- 5.1 Describe software design levels.
- 5.2 State modularization and concurrency.
- 5.3 State coupling and cohesion
- 5.4 Describe design verification.
- 5.5 State data flow diagram, structure charts.
- 5.6 Describe Hierarchical Input Process Output (HIPO) diagram.
- 5.7 State pseudo code.
- 5.8 Describe decision table.
- 5.9 Describe entity relationship model.
- 5.10 State data dictionary.

#### 6. Understand software design strategies

- 6.1 Define structured design.
- 6.2 Describe function-oriented design.
- 6.3 Describe object oriented design.
- 6.4 Describe software design patterns.
- 6.5 Describe software design approaches.

#### 7. Understand user interface design

- 7.1 Describe command line interface (CLI).
- 7.2 Describe graphical user interface (GUI).
- 7.3 State user interface design activities.
- 7.4 List GUI implementation tools.
- 7.5 State user interface golden rules.

#### 8. Understand software design complexity

- 8.1 Describe Halstead's complexity measures.
- 8.2 Describe Cyclomatic complexity measures.
- 8.3 State function point

#### 9. Understand software implementation

- 9.1 Describe structured programming.
- 9.2 State functional programming.
- 9.3 State programming style and coding guideline.
- 9.4 Describe software documentation
- 9.5 State software implementation challenges.

#### 10. Understand software testing process

- 10.1 Describe software validation and verification
- 10.2 State manual vs automated testing
- 10.3 Describe testing approaches
- 10.4 State testing levels
- 10.5 Describe testing documentation
- 10.6 State testing vs quality control & assurance and audit

## **11. Understand software maintenance overview**

- 11.1 Describe types of maintenance
- 11.2 List cost of maintenance
- 11.3 State maintenance activities
- 11.4 State software re-engineering
- 11.5 Describe component reusability

## 12. Understand Scrum agile method

- 12.1 Describe scrum framework and sprints
- 12.2 Sate scrum roles
- 12.3 State scrum master roles
- 12.4 Describe scrum events (sprint, planning, daily scrum meeting, sprint review, retrospective)
- 12.5 State artifacts
- 12.6 State user stories
- 12.7 Describe burn down charts
- 12.8 State estimation process
- 12.9 State scrum tools and benefits

# **Practical:**

- 1 Measure the complexity of a given source code based on
  - a. Halstead's Complexity Measures
  - b. Measure cyclomatic complexity of a give code or software.
  - c. Identify code blocks
  - d. Draw Flow chart
  - e. Draw flow graph
- 2 Measure function point of a given software.
- 3 Draw a data flow diagram from a given case study.
- 4 Draw structure chart form a given case study
- 5 Draw a HIPO diagram for a software requirement.
- 6 Do requirement analysis for a given case study and prepare requirement document
  - a. Gather user requirement
  - b. Write sample SRS
  - c. Apply Requirement Elicitation Techniques to validate requirements
- 7 Identify Modules from a case study
  - a. Identify Modules
  - b. Identify sequential and concurrent units
- 8 Identify coupling and cohesion From a object oriented design
- 9 Write a function requirement on structured English model
- 10 Write pseudo code of a given problem
- 11 Prepare a decision table from a given problem
- 12 Draw entity relationship model from a given case study.
- 13 Write a object oriented design from a given case study
  - a. Write the objects, class
  - b. Write Modules
  - c. Draw object relationship diagram
- 14 Design a prototype implementation of a software using GUI
  - a. Identify the GUI requirements
  - b. List down application specific GUI requirements
  - c. Draw a prototype implementation
  - d. Draw a prototype design using GUI tools
- 15 Write a functional code for a given problem
  - a. Functional programming approach
  - b. Object oriented approach
- 16 Write a sample software following provided coding guideline
- 17 Write sample software documentation
  - a. Requirement documentation
  - b. Design documentation
  - c. Technical documentation (code commenting and explanation)
  - d. User documentation user guide

- 18 Write re-usable code or module
  - a. Write sample library module
  - b. Version control using tools (git, svn)
  - c. Write machine independent code
- 19 Write Test documentation
  - a. Write test case for a given problem
  - b. Write Unit test cases
  - c. Write Functional test cases
  - d. Write user interface test cases
  - e. Write a automated test program
- 20 Practice sample scrum using any open source tools
  - a. Practice scrum events
  - b. Prepare sample artifacts for a project
  - c. Write user stories
  - d. Prepare burn down chart
  - e. Practice estimation planning poker

#### **REFERENCE BOOKS AND URL.**

- 1. Software engineering A practitioner's approach Mc GRAW HILL by Roger S. Pressman
- 2. Introduction to system analysis and design Prentice Hall by IgroHawryszkiewycz

Related URL links:

- 3. <u>http://www.vumultan.com/Books/CS605-</u> <u>Software%20Engineering%20Practitioner%E2%80%99s%20Approach%20%20by%20Roger%20S.%20</u> <u>Pressman%20.pdf</u>
- 4. <u>https://www.tutorialspoint.com/software\_engineering/index.htm</u>
- 5. <u>https://www.tutorialspoint.com/scrum/index.htm</u>